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Robust Pose Estimation from 3D Keypoints

Maggie Wang

Abstract—We present a pipeline to produce robust category-
level keypoint detection and pose estimations from RGBD images.
These robust detections of keypoints are useful for downstream
robot manipulation tasks in domestic and industrial applications.
We create an instance segmentation and semantic 3D keypoint
detection pipeline using synthetic data of box scenes to generate
heatmap and depth predictions of the box corners. We use the
partial Procrustes superimposition over all possible correspon-
dences to find an affine transformation of a unit box to fit feasible
box shapes and poses to the perception model predictions. We
find counterexamples using Monte Carlo sampling in pose space
of the entire perception system pipeline. In future work, we
will use counterexample-guided data augmentation, adversarial
training, and sampling techniques to improve the keypoint model
performance. We hope to quantify the distributional robustness
over scene graphs of the perception algorithm, which will allow
us to detect out-of-distribution scenes in real-world environments.

I. INTRODUCTION

EYPOINT detection is used in many robotics applica-

tions such as robot manipulation and warehouse au-
tomation because of its semantic and category-level generality.
However, robust keypoint detection can be difficult to achieve
due to occlusion, noise, and reflections [1]. Using target
object shape information, we can make keypoint detections
more robust by detecting outliers and extracting object pose
estimations from the keypoints.

Previous work in keypoint detection such as kPAM [2]
detect semantic 3D keypoints of mugs to demonstrate pick
and place tasks. The pipeline is limited by the amount of
real-world data and human annotation necessary to train
and test the network model, and the pipeline is created for
non-symmetric objects. Because of the difficulty in obtaining
massive amounts of labeled data, the perception system may
not be robust to rare failure cases. This work seeks to leverage
simulation data, which can allow us to put the system under
rigorous test before deploying in the real world.

kPAM also does not use prior shape information of the
object to make keypoint detections more robust. By focusing
on detecting the corner keypoints of boxes, which is highly
symmetric, we can use box shape information to estimate pose
by finding the smallest error over all correspondences in the
Iterative Closest Point (ICP) algorithm [4]. This allows us to
disregard outliers if the error is too high. This method can be
generalized for other known shapes if the number of points
is relatively small for brute-force correspondence matching. If
we use scaling ICP, which is an extension of ICP that integrates
a scaling matrix, we can also estimate anisotropic target object
scale.

While recent development in reinforcement learning (RL)
has shown advances in pixel-to-torque learning [5] for robot
manipulation, they are limited in their modular transferability.

Furthermore, the ability to test the perception subsystem alone
can help provide guarantees to the overall system [6], which
is important in safety-critical applications.

Our goal is to eliminate failure cases for rigorous and scal-
able deployment in real-world cases. To achieve this, we can
use counterexamples (failure cases) to improve the perception
pipeline. We can leverage simulation to develop end-to-end
attack algorithms to determine how semantic (i.e., real-world)
perturbations, e.g. changes in object pose, lighting condition,
and object deformation, affect perception outputs. This work
focuses on perturbing box poses to find counterexamples using
Monte Carlo search.

Contributions and Outline

The main contribution of this work is the keypoint detection
pipeline that uses a fully simulated environment to create
ground truth keypoints and poses to compare our predictions
against and find semantically meaningful counterexamples.
Given an RGBD image, we use a CNN to predict a 3D
heatmap. We then extract eight 3D keypoints using non-
maximum suppression. We calculate an optimal box pose from
the detected keypoints. We run our system under test using
a Monte Carlo search to find counterexamples that inform
potential failure points in the system.

In Section 2, we discuss related work. In Section 3, we
describe the data, network, and pose estimation pipeline.
Finally, in Section 4, we show counterexamples found through
Monte Carlo search of 10,000 scenes.

Fig. 1: We would like to use vision to detect corner keypoints
and estimate box poses in a scalable, fast, and reliable way
for downstream robot manipulation, such as for an Amazon
warehouse robot. By using extensive simulation data, we can
eliminate many potential failure cases prior to testing in real-
world environments.
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II. RELATED WORK

We survey two broad categories of pose estimation for
robotics: classical geometric pose estimation and deep learn-
ing pose estimation. We discuss the shortcomings of each
approach and motivate the pose estimation method used in
this work, where we use a neural network to create a 3D
probability heatmap, non-maximum suppression to extract
keypoints, and use partial Procrustes superimposition over all
correspondences for pose estimation.

We put the entire perception pipeline under rigorous test
through counterexample search. Instead of adversarial attacks
in pixel space that lack transferable meaning in physical
situations, we make semantically meaningful perturbations in
pose space to make an end-to-end attack of the perception
pipeline.

A. Pose Estimation in Robotics and Computer Vision

1) Geometric Pose Estimation: Registration algorithms are
commonly used for 6D pose estimation in robotics. These
techniques use 3D point clouds and prior object shape infor-
mation to generate pose estimation. RANSAC [7]] could work,
but the number of permutations is computationally feasible
to use an exhaustive approach instead when the number of
points is small. TEASER [{8] assumes a noisy correspondence
generator and is based on many correspondences. Due to
its non-convexity and iterative procedure, ICP with poor
initialization is susceptible to suboptimal local minima. To
bypass the iterative correspondence steps in ICP with poor
initialization, we use a small number of keypoints and find
the minimum error of all possible correspondences using the
partial Procrustes superimposition algorithm.

2) Deep Neural Network-Based Pose Estimation: Learning-
based approaches such as PoseCNN [9] and MCN [10] use a
Convolutional Neural Network (CNN) to estimate 6D pose
estimation. These approaches takes color images as input to
give pose estimations. Although these approaches can handle
occlusions and symmetric objects, they also require extensive
post-processing steps that are slow for real-time applications.

B. Adversarial Attacks

There are three broad classes of adversarial attacks on ML
algorithms. Training-time attacks use data poisoning (e.g.,
model skewing and feedback weaponization) [11] to make
the model more robust during training. Model extraction
attacks aim to duplicate models or to recover training data via
blackbox probing [[12]. This work focuses on test-time attacks,
or adversarial inputs to a ML algorithm.

Most work on test-time attacks for CNNs focus on pixel-
based adversarial attacks. The fast gradient sign method
(FGSM) attack [13] aims to make a perturbation that max-
imizes the loss function to cause the CNN to misclassify the
image. The Carlini-Wagner (CW) targeted misclassification
attack [14] uses optimization to create adversarial perturba-
tions. Rather than pixel-based attacks, this work focuses on
semantic attacks to find failure cases that can occur in real-
world environments.

C. Counterexample Search

The FGSM and CW adversarial attacks require white-box
knowledge of the target model. However, in nearly all realistic
robotic simulations, the renderer is non-differentiable and
gradient-free; therefore, we must treat our perception system
as a black box.

To find counterexamples, we search for samples where
the error between our target and predicted keypoints (which
is the output of the 3D heatmap, NMS, and partial Pro-
crustes superimposition steps) is large. In this work, we use a
Monte Carlo search for counterexamples. The search for coun-
terexamples could be accelerated using adaptive importance-
sampling methods, which [15]]. These counterexamples can be
used to augment the dataset [[16] and expose failure cases in
the perception system.

D. Semantic Perturbations

More recently, adversarial attacks have transferred into the
semantic space, which modifies the parameter space in simula-
tion to create real-world perturbations (e.g., lighting and pose).
In the semantic space, it has been found that varying the pose
of objects for CNNs can be extremely effective in attacking the
CNN [17], [18]], [19]. However, their work in attacking poses
in the semantic space leads to mostly physically infeasible
configurations. This work thus aims to use a simulator to
generate realistic, physically feasible images to generate end-
to-end attacks on a CNN classifier.

III. METHODS
A. Data Generation

We generate statically stable box scenes using the Drake
[20] dynamics simulator and the Blender [21] renderer. The
SNOPT solver [22] is used to create a minimum distance
constraint between the boxes, and the boxes are dropped from
a fixed height and forward-simulated until their velocities fell
below a threshold. Figure [2] shows an example cluttered box
scene generated using Blender and Drake.

The initial keypoint detection code is based on the open-
source code from [2] and is modified to remove ROS depen-
dencies and include a pipeline to train the model on simulated
data.

B. Instance Segmentation

We use Mask R-CNN [23] for instance segmentation. Given
an image, it returns the object bounding boxes, classes, and
masks. For each box object in the scene, we use the bounding
box to crop the original image generated by Blender. Figure
[3] shows an example of an image cropped by a bounding box.

C. Keypoint Model

The keypoint model is a ResNet 34-backbone and integral
regression network as described in [2] and [24]. This integral
network gives us a probability map that represents the likeli-
hood of a keypoint being at a certain pixel location.

The input to the network is the RGBD image of the cropped
region containing a complete box. For training, we create a 3D
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Gaussian kernel heatmap from the ground truth keypoints. We The output of the network is a 3D probability heatmap,
use a mean-squared error loss between the target Gaussian where each voxel is the probability of a keypoint being at that
kernel heatmap and the network prediction. point, as illustrated in Figure [

(a) Generated scene using the photorealistic Blender renderer, (b) Generated label image of the same scene using the Drake
where the corners are labeled as ground truth keypoints. The red dynamics simulator, where each object corresponds to a different
points are visible corners, blue points are occluded corners, and color.

yellow points are additional keypoints indicating visible box label
locations that are ignored in this pipeline (but could be used for
other tasks).

Fig. 2: Statically stable cluttered box scenes generated in simulation. The boxes were dropped from a fixed height and forward-
simulated until stability was achieved. SNOPT is used as a distance constraint solver to ensure physically feasibility.

(a) Original box scene with no cropping. This RGBD image is fed (b) Object after bounding box crop (with some tolerance around

into the Mask R-CNN network to create a bounding box of each the edges). This RGBD image is fed into the keypoint NN model.
object.

Fig. 3: Mask R-CNN is used for instance segmentation to find the bounding box of the object. The original image is cropped
to contain the object, which allows us to find keypoints only in relevant locations in the scene where there contains an object
of interest.
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Fig. 4: Original image is cropped with a bounding box from the Mask R-CNN instance. The 3D space is voxelized into a (u,
v, 2) coordinate system. This image is fed into the keypoint detection model, along with a target 3D Gaussian heatmap of the
keypoints. The keypoint detection model uses a mean-squared error loss to learn the 3D Gaussian heatmap.
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D. Extracting Box Poses

1) Nonmaximum Suppression (NMS): We first ran non-
maximum suppression to turn the 3D heatmap into eight corner
keypoints. We find the location with the maximum value in
the heatmap and create a Gaussian kernel surrounding that
location. This kernel is then subtracted from the entire 3D
heatmap. We repeat this process n times to extract the n
kernels that represent the keypoints.

2) Search Over All Possible Correspondences Using Least-
Squares Fitting: We solve the Procrustes problem by doing
least-squares fitting of two 3D point sets [4], which finds
the optimal translation and rotation. We calculate the error
for all of the possible correspondence sets, and take the
correspondence set with the smallest overall error. We brute-
force correspondences of all n! permutations (where n = 8
for boxes), using only m points (we chose m = 5). For small
n, this step can be done in a single pass using PyTorch.

For now, we assume that the boxes have unit and constant
length.

Fig. 5: Example ground truth corner points (white), non-maximum sup-
pression (NMS) output (black), partial Procrustes superimposition output with
lowest error (gray). Since the final predicted keypoints match the ground truth
keypoints, the error is low.

E. Error Metric for Counterexample Search

We define a counterexample to be a sample that produces
a large (e.g., greater than 0.005) error between the nearest-
neighbor point-to-point distance between the transformed unit
box corner points and ground truth keypoints in camera frame.
The error is given by

s 2
ZiZOHRmCi +t—s;

error = 3 2

where m,, is the unit box corner (where c; is the integer
index correspondence), R is the rotation matrix, ¢ is the
transformation vector, and s; is the corresponding nearest-
neighbor ground truth keypoint.

IV. RESULTS
A. Monte Carlo Search for Counterexamples

We use the parallelized Monte Carlo search from [13] to find
counterexamples. Running the search with 20 CPU processes
for a few hours, we found three counterexamples in 20,000
test images. A histogram of the errors is shown in Figure [6]
and the counterexamples are shown in Figures [7] [ and [9]

B. Discussion

This counterexample search is easily customized for other
systems, and the keypoint detection and pose estimation
pipeline can be adapted for any object with keypoints. This
pipeline is capable of finding interesting failure cases. The
pose estimation technique is fairly robust, and the use of
simulation to find failure cases allows us to find tail-end failure
cases that have a low probability of occurring, yet are still
important to be robust against. From Figure [6] we see that
the failure cases are extremely rare, yet they are important to
find to improve the system. Since it takes around 10,000 runs
for a single failure case, we can accelerate this process using
adaptive search methods in future work.

In the counterexample found in Figure [7] with 0.1410
mean error, we see that four of the points found from NMS
are outliers. Since we chose to use five points for least-
squares fitting, the error is large because it is trying to fit
all of the points, and one of the points is an outlier. In the
counterexample found in Figure [§| with 0.1079 mean error,
there are also four outliers found from NMS. Lastly, in the
counterexample found in Figure [0] with 0.0754 mean error,
the final predictions are slightly off the actual keypoints due
to noise in the extracted NMS points. These failure cases are
surprising given that they look similar to the normal training
data, and the system should be able to correctly locate the
keypoints.

This failure case can improve our perception system in a few
ways. Firstly, it can show that the network may have a “hole”
in this region in the sense that it is unable to give a good 3D
heatmap at this box pose. It also shows us limitations in using
NMS, as we may lose information while finding the highest
probability points. We can try using fewer points when solving
for the optimal box rotation and translation—if we chose to use
four instead of five points, we would be able to correctly find
the correct location of keypoints.
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Fig. 6: Log-scaled histogram of errors with 20,000 images. These errors are the mean squared error of the nearest-neighbor
point-to-point distance between the transformed unit box corner points and the ground truth keypoints in camera frame. Most of

the images are clustered between 0 and 0.02, but there are three counterexamples. From highest to lowest, the counterexamples
have mean error of 0.1410, 0.1079, and 0.0754.
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(a) Box that produced output with high error. (b) Ground truth corner keypoints (white) and points from NMS
(black). We see that four of the points found from NMS are outliers.

Fig. 7: Counterexample with mean error of 0.1410. This counterexample exists because four outliers are found by NMS.

(a) Box that produced output with high error. (b) Ground truth corner keypoints (white) and points from NMS
(black). In this case, there are also four of points found from NMS
are outliers.

Fig. 8: Counterexample with mean error of 0.1079. This counterexample exists because four outliers are found by NMS.

(a) Box that produced output with high error. (b) In this case, there are “only” two outliers, but the other six
points still have noise. This causes the final predicted points to not
completely match the ground truth points, as shown in Figure El

Fig. 9: Counterexample with mean error of 0.0754. While there are fewer outliers in this case, many of the NMS points deviate
from the ground truth points a bit.
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V. FUTURE WORK

We would like to see how well the pipeline performs in
cluttered environments such as the boxes in Figure We
would also like to incorporate scaling components in the least-
squares problem to make a shape estimation of the box (in
addition to the current pose estimation).

When naive Monte Carlo search serves to be too inefficient,
we will use adaptive Monte Carlo search for failure cases
[L5]. This approach prioritizes coverage over simply finding a
point that minimizes/maximizes a function, thereby speeding
up rare-event simulation and find counterexamples with less
time and compute.

If the failure in the counterexample comes from a network
prediction with a large error, we will fine-tune the neural
network with counterexamples.

In the long term, we would like to quantify distributional
robustness over scene graphs [25] to detect out-of-distribution
scenes [26] in real-world tasks. This would allow us to find
failure cases in our perception pipeline prior to running the
entire pipeline and using incorrect predictions in downstream
manipulation tasks.

VI. CONCLUSION

We create a box keypoint detection and pose estimation
pipeline using a dynamics simulator and photo-realistic graph-
ics render. We use a network that inputs an RGBD image and
returns a 3D probability heatmap of box corner locations. We
then use non-maximum suppression and least-squares fitting
over all correspondences to find the minimum error. This
gives us a box pose estimate while ignoring outliers that
make the error large. We run this pipeline using Monte Carlo
sampling to find counterexamples in over 20,000 scenes. These
counterexamples can be used to improve the model and overall
perception pipeline.
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